Yearbook 1 - 1952*
Inventory-Analysis of Industrial Arts Teacher Education Facilities (Walter R. Williams and Harvey Kessler Meyer, eds.).
This yearbook is not divided into chapters. Though Williams and Myer are indicated as editors, apparently they are the co-authors of the yearbook as well, which is a report of a status study of industrial arts teacher education programs.

Yearbook 2 - 1953*
Who's Who in Industrial Arts Teacher Education (Walter R. Williams, Jr. and Roy F. Bergengren, eds.). This yearbook is a listing of individuals who were felt to be leaders in industrial arts. Demographic data along with significant achievements were listed for these leaders.

Yearbook 3 - 1954*
Some Components of Current Leadership; Techniques of Selection and Guidance of Graduate Students; An Analysis of Textbook Emphasis (Roy F. Bergengren, Jr.; George F. Henry; and Talmadge B. Young - three subtitles).
This yearbook is divided into three sections written by the three authors.

Yearbook 4 - 1955*
Superior Practices in Industrial Arts Teacher Education (1955, R. Lee Hornbake & Donald P. Maley, eds.).
No specific authors for each chapter are referenced. However, an extensive list of contributors is provided in Appendix A of the yearbook.
1. A Report to the Profession.
2. Student Personnel Practices.
3. The General Education of Industrial Arts Teachers.
4. The Professional Education of Industrial Arts Teachers.
5. Student Teaching
6. The Technical Background of Industrial Arts Teachers.
8. In Retrospect.
Appendix A - Contributors to the Yearbook
Appendix B - The Inventory

Yearbook 5 - 1956*
Problems and Issues In Industrial Arts Teacher Education (C. Robert Hutchcroft, ed.).
1. The Improvement of Teacher Education (C. Robert Hutchcroft).
3. The Demands of a Contemporary Culture (Kermit A. Seefeld).
4. The Derivation of Goals and Purposes of Instruction (John A. Whitesel).
7. Concepts of General Education (Calvin M. Street).
Yearbook 6 - 1957*
Sourcebook of Readings in Education (Carl Gerbracht and Gordon O. Wilbur, eds.).
1. Philosophical Viewpoints (R. Lee Hornbake).
2. Psychological Theories (Walter B. Waetgen).
3. Curricular Approaches (Paul E. Harrison).
4. Instructional Methods (Donald Maley).
5. Guidance Procedures (James R. Hastings).
6. Community and Professional Relations (Howard S. Decker).

Yearbook 7 - 1958*
The Accreditation of Industrial Arts Teacher Education (Verne C. Fryklund and H. L. Helton, eds.).
1. Purpose and Procedures in Accreditation (W. Earl Armstrong).
2. History of Accreditation.
3. Conduct of the National Survey.
5. Supplementary Guide for Industrial Arts Teacher Education.
6. Role of Industrial Arts in Self-Improvement.
Appendix A - Accreditation in Industrial Arts Education - The Questionnaire and Responses.
Appendix B - Standards and Guide for Accreditation of Teacher Education.

Yearbook 8 - 1959*
Planning Industrial Arts Facilities (Ralph K. Nair, ed.).
1. Introduction (Ralph K. Nair).
2. Industrial Arts in Modern education (Charles E. Shoemaker).
3. Types of Industrial Arts Programs and Laboratories (Bernard S. Proctor).
5. Equipment Selection (Paul L. Scherer).
Appendix B - Planning an Industrial Arts Program (Robert L. Woodward).
Appendix C - Plans and Illustrations (Paul L. Scherer).
Appendix D - Equipment and Non-Consumable Tools and Supplies (Paul L. Scherer).

Yearbook 9 - 1960*
Research in Industrial Arts Education (Raymond Van Tassel, ed.).
1. The Real Crisis in Education (Alonzo G. Grace).
2. Significant Research in Industrial Arts Teacher Education (Paul E. Powell and Paul L. Klientjes).
3. Research by Industrial Arts Teacher Education (John A. Fuzak).
8. Summary (Raymond Van Tassel).

Yearbook 10 - 1961

Graduate Study in Industrial Arts (Ralph P. Norman and Ralph C. Bohn, eds.).
1. The Scope of Industrial Arts (Heber A. Sotzin).
2. Industrial Arts as a Discipline (Kenneth F. Perry).
5. Development of the Collegiate School Industrial Arts (Kermit Seefeld).
6. The Evolution of Graduate Work in Industrial Arts (Karl Schulz).
7. The Relationship Between Undergraduate and Graduate Programs in Industrial Arts (M. Ray Karnes and Donald G. Lux).
9. Examples of Graduate Programs in Industrial Arts (C. Thomas Dean and Irvin T. Lathrop).
10. A Core for Graduate Study in Industrial Arts Teacher education (Daniel Lopez and Wayne Champion).
11. A Look Ahead (Ralph P. Norman and Ralph C. Bohn).

Yearbook 11 - 1962

Essentials of Preservice Preparation (Donald G. Lux, ed.).
1. Background and Purpose (Donald G. Lux).
2. General Education - A Discussion of Definition (Kenneth Phillips).
3. Teaching General Education (Kenneth Phillips).
4. Implications for Industrial Arts (Kenneth Phillips).
8. Some Immediate Tasks (Douglas R. Sherman).
10. Assumptions Underlying Preservice Technical Preparation (Delmar W. Olson).
11. A Proposed Program of Preservice Technical Education
12. Implications for Program (Howard F. Nelson).

Yearbook 12 - 1963

Action and Thought in Industrial Arts Education (Ethan A. T. Svendsen, ed.).
1. Introduction (Ethan A. T. Svendsen).
7. Subsequent Developments and Trends (Ethan A. T. Svendsen).

Yearbook 13 - 1964

Classroom Research in Industrial Arts (Charles B. Porter, ed.).
1. Research and the Classroom Teacher (Irvin T. Lathrop, John Furlong, and C. Thomas Dean).
3. The Tools of Classroom Research (Charles B. Porter, John Rowlett, Robert Swanson, and Lawrence S. Wright).
5. Selecting Problem Areas with Implications for Action Research (C. Nelson Grote and Clyde M. Hackler).
6. Resources for Research (Ralph P. Norman).

Yearbook 14 - 1965*
Approaches and Procedures in Industrial Arts (G. S. Wall, ed.).
1. Introduction and Critique (G. S. Wall).
2. Industrial Arts and Education (G. S. Wall).
5. Developing Creative Thinking Abilities (Wesley S. Sommers).
7. Programed Instruction (Philip W. Ruehl and Armand G. Hofer).
8. Open Laboratory (Kenneth J. Erickson).
9. Team Teaching (Harold H. Halfin and Marvin M. Kufahl).
10. Advanced Placement (Kenneth J. Erickson).

Yearbook 15 - 1966*
Status of Research in Industrial Arts (John D. Rowlett, ed.).
1. Introduction (Rupert N. Evans).
2. Research Related to the Achievement of Industrial Arts Objectives (Wesley S. Sommers and Wesley L. Face).
4. Research and Experimentation as a Teaching Method in Industrial Arts (Joseph Luetkemeyer).
5. Research Related to Industrial Arts Teacher Education (Eckhart A. Jacobsen).
6. Staff Studies and Other Nondegree Research in Industrial Arts Education (W. R. Miller).
7. Securing Funds for Research in Industrial Arts Teacher Education (John D. Rowlett).

Yearbook 16 - 1967*
Evaluation Guidelines for Contemporary Industrial Arts Programs (Lloyd P. Nelson and William T. Sargent, eds.).
No chapter authors are specified in this yearbook. Rather, it was “staff project” including, in addition to the editors, Kenneth H. Bergman, Henry A. Loats, William H. Middleton, Kenneth E. Poucher, Jake Reams, Claude E. Rieth, and Edgar S. Wagner.
1. Contemporary Approaches to Teaching Industrial Arts.
2. Contemporary Industrial Arts Activities.
3. Contemporary Industrial Arts Resources.
5. Contemporary Industrial Arts and Teacher Effectiveness.
6. Implications for Student Growth.
7. The Functional Evaluating Team.

Yearbook 17 - 1968*
A Historical Perspective of Industry (Joseph F. Luetkemeyer, ed.).
1. Introduction to the Yearbook (Joseph F. Luetkemeyer).
2. The Origin of Man and His Dependency on Technology (Kenneth Guy and Robert C. Schacht).
3. Handicraft Technology (Frederick Broadhurst and Paul E. Harrison).
4. The Industrial Revolution (William F. Tierney).
7. The Role of Management (George R. Merrill).
8. Organized Labor and the Production Worker (Kenneth Stough).

Yearbook 18 - 1969*

Industrial Technology Education (C. Thomas Dean and Nelson A. Hauer, eds.)
1. Technological Developments and Industrial Technology (Beryl M. Cunningham).
2. Industrial Technology: Implications for Industrial and Technical Teacher Education (Elmer E. Erber).
3. A Comparison of the Four-Year Industrial Technology Program with Engineering and Industrial Arts Programs (Rodney Lewis and Herbert Robinson).
4. Two-Year Associate Degree Programs Compared with Four-Year Industrial Technology B.S. Degree Programs (Paul L. Klientjes).
5. Laboratories and Equipment (Norman W. Risk).
6. Faculty Selection and Qualifications (Charles W. Keith).
7. Selection of Technology Students (Adam E. Darm).
10. Implications for Future Planning (C. Thomas Dean).

Yearbook 19 - 1970*

Industrial Arts for Disadvantaged Youth (Ralph O. Gallington, ed.)
1. The Disadvantaged Youth (Ralph O. Gallington).
3. Problems and Needs of Inner City Youth (Rutherford E. Lockette).
4. Industrial Arts Teachers for Disadvantaged Youth (James R. Heggen).
5. The Industrial Families Included in Industrial Arts (Willis E. Ray).
7. Special Interest Families: Manufacturing Industries (John R. Lindbeck).
8. Special Interest Families: Construction Industries (Daniel L. Householder).
9. Implications and Generalizations (Ralph O. Gallington).

Yearbook 20 - 1971*

Components of Teacher Education (Willis E. Ray and Jerry Streichler, eds.)
1. The Teacher We Wish to Prepare (Willis E. Ray and Jerry Streichler).
2. The Character of a Complete Program (George R. Horton).
4. Theoretical Basis of Content (Frank A. Marschik).
5. Toward Elements of Content (Richard E. Ginther).
6. Scope and Sequence of Content (Bryant Crawford, Jr.).
8. Elements of Instructional Method (Richard A. Swanson).
9. Some Additional Program Considerations (Willis E. Ray and Jerry Streichler).
Yearbook 21 - 1972*

Industrial Arts for the Early Adolescent (Daniel L. Householder, ed.).
1. Industrial Arts of the Early Adolescent (Daniel L. Householder).
2. Early Adolescence: the Revolution Within (John P. Schenck).
3. Educational Purposes for the Transition Years (Joseph J. Carrel).
4. Administrative Patterns in Contemporary Education (Lloyd D. Neher).
6. The Industrial Arts Curriculum for the Early Adolescent (Alan R. Suess).
8. The Industrial Arts Teacher of the Early Adolescent (Daniel L. Householder).

Yearbook 22 - 1973*

Industrial Arts in Senior High Schools (Rutherford E. Lockette, ed.)
1. Participatory Technology and Industrial Arts Education (Melvin Kransburg).
2. Major Societal Forces Affecting Schools in the 70’s (Deborah Partridge Wolf).
5. Senior High School Industrial Arts Programs: A Study of Careers Through the Use of Community Resources (Robert J. Ullery).
7. The Role of Industrial Arts in the Senior High School (John Mitchell).
8. The Orchestrated System Focus Upon Industrial Arts for the Senior High School (Lewis W. Yoho).
10. An Experimental, Interdisciplinary Career Program, Designed for the Non-Academic Students in New York City High Schools (Gordon Leibowitz).
11. Pittsburgh’s Industrial Arts Programs are Performance Oriented and Designed to Meet Student’s Needs (Jerry C. Olson).
13. Industrial Arts: The Study of Industrial Technology (Donald F. Hackett).
15. The Application of Technology in the Solution of Major Problems that Face Mankind in the Future (Donald Maley).

Yearbook 23 - 1974*

Industrial Arts for the Elementary School (Robert G. Thrower and Robert D. Weber, eds.).
1. Industrial Arts in the Elementary School (Mary Margaret Scobey and Grace Graham).
2. The Child - The Learner (Ardelle A. Llewellyn and Violet B. Robinson).
5. Contemporary Programs (W. R. Miller).
7. Personnel: Their Role (Gardner Boyd).
8. Teacher Education (Franklin C. Ingram and Vito R. Pace).
10. Philosophical Positions (William R. Hoots, Jr.).
12. Selected Bibliography (Delmar L. Larsen).

Yearbook 24 - 1975*
A Guide to the Planning of Industrial Arts Facilities (Donald E. Moon, ed.).
1. Introduction (Donald E. Moon).
2. Terminology, Status and Trends (Richard J. Fowler).
Appendix A - Program-Project Requirements (H. A. Goltz).
Appendix B - Facility Evaluation (Ralph V. Steeb).
Appendix C - Laboratory Safety Evaluation Form (John Bonfadini).

Yearbook 25 - 1976*
Future Alternatives of Industrial Arts (Lee H. Smalley, ed).
Prologue (Kendall N. Starkweather).
1. Rationale (John Fecik and Wesley L. Face).
4. Implications of Education (Richard Hawthorne and Ronald Todd).
5. Implications for Industrial Arts (Paul W. DeVore and Donald P. Lauda).
Epilogue (Lee H. Smalley).
Appendix - A Study of Potential Directions for Industrial Arts Toward the Year 2000 A.D.

Yearbook 26 - 1977*
Competency-Based Industrial Arts Teacher Education (Jack C. Brueckman and Stanley E. Brooks, eds.).
1. Foundations of Competency-Based Education (Lawrence S. Wright).
2. Affective Teacher Education in a Competency/Performance Based Program (John Kampsnider).
3. A State Looks at Competency/Performance Based Teacher Education (Vincent C. Gazzetta).
4. The Status of Competency/Performance Based Industrial Arts Teacher Education (Stanley E. Brooks and Jack C. Brueckman, Jr.).
5. Florida International University: A Case Study (A. Dean Hauenstein).
7. Implementing a Pre-Service C/PBTE Program in Industrial Arts Teacher Education (Franzie L. Loepp).
8. Accountability within Competency/Performance-Based Teacher Education Programs for Inservice Teachers (David L. Jelden).
10. And Now to begin Work (Stanley E. Brooks and Jack C. Brueckman).
Appendix A - Florida International University CBTE Sample Handbook (A. Dean Hauenstein).

Yearbook 27 - 1978*
Industrial Arts in the Open Access Curriculum (Lowell D. Anderson, ed.).
2. The Meaning of Open Access for Industrial Arts Curricula (David L. McCrory).
3. Learning Environments for Industrial Arts (Ronald D. Todd).
6. Implications for Industrial Arts Teacher Preparation (Richard V. Barella and Donald F. Smith).
7. The Open Access Teacher (James S. Levande).
9. Implications for Industrial Arts in the Open Access Curriculum (Lowell D. Anderson).

Yearbook 28 - 1979*
Industrial Arts Education: Retrospect, Prospect (G. Eugene Martin, ed.).
3. An Examination of the Relationship of Industrial Arts to General Education (Kendall N. Starkweather).
4. Industrial Arts and Its Relationship to Vocational education (Ralph V. Steeb).
5. Industrial Arts Laboratory Facilities - Past, Present, and Future (Perry R. Gemmill).
The Development of Selected Contemporary Industrial Arts Programs.
7. The Maryland Plan (Donald Maley).
8. The Industrial Arts Curriculum Project (Donald G. Lux).
10. Influence of Technology on Industrial Arts Subject Matter (Paul W. DeVore, William E. Griscom, and George R. Maughan, Jr.).
11. Industrial Arts as a Discipline for Studying the Future (Donald P. Lauda).
12. Industrial Arts Teaching Methods (Ming H. Land).
13. Graduate Education in Industrial Arts (James J. Buffer, Jr.).
14. The Role of Supervisors in Industrial Arts (James E. Good).
15. Leadership In Industrial Arts (H. David Mohan).
17. Professional Councils and Associations of the Industrial Arts Profession (Willis W. Ray).
18. The Mississippi Valley Conference (Rupert N. Evans).
19. The Role of Professional Journals and Their Contributions to Industrial Arts (Edward H. White).

Yearbook 29 - 1980*
Technology and Society: Interfaces with Industrial Arts (Herbert A. Anderson and M. James Bensen).
2. The Role of Technology in Solving Societal Problems (J. W. Chaplin).
3. Ideals and Practice - The Profession’s Response to Technology/Society Problems (Jerry Streichler).
4. Materials and Resources (Louie Melo).
6. Housing (Thomas Tsuji).
8. Pollution (Ralph C. Bohn).
9. Transportation (Myron Bender).
10. Recreation and Leisure - A Letter to a Young Industrial Arts Teacher (Delmar W. Olson).
11. Additional Problem Areas (Leonard F. Sterry).
12. Getting There From Here (David L. Passmore and William A. Welsh).
13. In Summary - A Parting Perspective (M. James Bensen).

Yearbook 30 - 1981

An Interpretive History of Industrial Arts (Richard Barella and R. Thomas Wright, eds.).
1. Introduction (R. Thomas Wright and Richard Barella).
2. Background: The European Influence (Lloyd P. Nelson).
3. Industrial Education in Early America (G. Eugene Martin).
6. Industrial Arts Founded (Donald F. Smith).
7. Industrial Arts Redirected (Donald G. Lux).

Yearbook 31 - 1982

The Contributions of Industrial Arts to Selected Areas of Education (Donald Maley and Kendall N. Starkweather, eds.).
1. Industrial Arts and Its Contribution to the Education of the Elementary School Child (Michael J. Williams).
2. Industrial Arts and Its Contribution in Assisting the Student with Developmental Tasks (Donald Maley).
5. Industrial Arts and Its Contribution to the Education of the Handicapped (Michael Bender).
6. Industrial Arts and Its Contribution to Career Education (Donald F. Smith).
7. Industrial Arts and Its Contribution to Vocational Education (Nevin R. Frantz).
8. Industrial Arts and Its Contribution to the Guidance of Youth (Walter S. Mietus).
9. Industrial Arts and Its Contribution to the Improvement of Reading (Frank Walton).
10. Industrial Arts and Its Contribution to Assisting the Student in Language Arts Development (Perry R. Gemmill).
12. Industrial Arts and Its Contribution to Consumer Education (Rollin Williams, III).
13. Industrial Arts and Its Contribution to the Education of People for the Future (Kendall N. Starkweather).
14. Industrial Arts Puts the Whole Student in the School (Donald Maley).

Yearbook 32 - 1983

The Dynamics of Creative Leadership (Robert E. Wenig and John I. Matthews, eds.).
1. Ideals of Leadership and the Individual’s Function (Robert E. Wenig and John I. Matthews).
2. History and Development of Leadership Research and Review of Selected Theoretical Models (Jerry Coomer).
3. Operating from the Art of the Possible (Richard F. Peter).
7. Ways and Means of Developing Creative Industrial Arts Education Leaders (Ronald Todd).
13. Time Management (Daniel L. Householder).
Epilogue (Robert E. Wenig and John I. Matthews).

Yearbook 33 - 1984*

Affective Learning in Industrial Arts (Gerald L. Jennings, ed.).
1. Affective Learning: An Overview of Issues (Gerald L. Jennings).
2. On Person-Centered Experiential Learning and Affective Development (Louis Thayer).
3. The Implications of Affective Learning for Industrial Arts Education (Lewis D. Kieft and Paul D. Kuwik).
5. The Role of Industrial Arts Teacher Education in Affective Learning (Harold D. PaDelford).
6. An Annotated Bibliography of Sources in Affective Learning (Gerald L. Jennings).

Yearbook 34 - 1985*

Perceptual and Psychomotor Learning in Industrial Arts Education (John M. Shemick, ed.).
2. Contemporary Approaches to Theories and Models of Perceptual and Psychomotor Learning (Robert N. Singer).
3. Applications and Implications of Theoretical Learning Models for Industrial Arts Education (Paul E. Brauchle).
7. Instructional Strategies in the teaching of Perceptual and Psychomotor Skills (James J. DeCaro).
Reactions to Chapter 8 (Harold E. PaDelford).
Reactions to Chapter 9 (Pete Martinez).

Yearbook 35 - 1986

Implementing Technology Education (Ronald E. Jones and John R. Wright, eds.).
1. A Rationale for Technology Education (Donald P. Lauda and David L. McCrory).
2. Elementary School Technology Education Programs (Richard E. Peterson).
3. Middle/Junior High Technology Education (E. Allen Bame).
7. Graduate Level Technology Education (John R. Wright).

Yearbook 36 - 1987

Conducting Technical Research (Everett N. Israel and R. Thomas Wright, eds.).
4. Conceptualizing the Research Topics (Gary D. Weede).
9. Assessing the Results (Ron J. Kovac).
10. Reporting the Results (Wayne D. Andrews).
11. Evaluating and Applying the Results (Max E. Kanagy).

Yearbook 37 - 1988

Instructional Strategies for Technology Education (William H. Kemp and Anthony E. Schwaller, eds.).
1. Technology Education (Donald P. Lauda).
2. Introduction to Instructional Strategies (William H. Kemp and Anthony E. Schwaller).
4. Interdisciplinary Approach (Karen F. Zuga).
5. Social/Cultural Approach (John R. Wright).
7. Integrating the Systems of Technology Approach (Ronald E. Jones).
8. Interpretation of Industry Approach (Lorimer R. Bjorklund).

Yearbook 38 - 1989

Technology Student Organizations (M. Roger Betts and Arvid W. Van Dyke, eds.).
1. Why Student Organizations? (Franzie L. Loepp).
2. Technology Students Need a Student Organization (M. Roger Betts).
4. The Scope of Student Organizations (Marie E. Theobald).
5. History, Purposes, and Activities of TSA (C. Daniel Miller).
6. History, Purposes, and Activities of TECA (Janet L. Robb).
7. Technology Teacher’s Role As Advisor and Leader (Arvid W. Van Dyke).
8. Teaching Technology Through TSA (Harold E. Richards).
9. Motivating Students With Competition (Terry J. Squier).
11. Evaluating the Success of Student Organizations (William E. Dugger).
12. Selecting and Developing Resources (Douglas E. Hammer).

Yearbook 39 - 1990*

Communication in Technology Education (Jane A. Liedtke, ed.)
1. Communication Technology (Sharon A. Brusic)
2. Communication Systems in Business, Industry, and Government (Frank Trocki)
3. History of Communication Content in Technology Education (Janet L. Robb and Ronald E. Jones)
4. Conceptual Models for Communication in Technology Education Programs at the Elementary, Middle School, and Junior High School Levels (Donna K. Trautman)
5. Conceptual Models for Communication in Technology Programs at the High School Level (Richard D. Seymour)
6. Rationale and Conceptual Models for Communication Technology in Technology Teacher Education (Leonard F. Sterry and Robert Hendricks)
7. Selecting and Developing Communication Activities (Mark E. Sanders)
8. Establishing the Communication Teaching and Learning Environment (Ryan Brown)
9. Evaluating and Improving the Communication Teaching and Learning Process (William E. Dugger, Jr.)
10. A Synthesis of Communication Systems and Approaches for Technology Education (Jane A. Liedtke)

Yearbook 40 - 1991*

Technological Literacy (Michael J. Dyrenfurth and Michael R. Kozak, eds.)
1. Technological Literacy in Context (Ronald D. Todd)
2. Education About Technology (Michael R. Kozak and Janet Robb)
3. International Perspectives on Technological Literacy (Jule D. Scarborouh)
4. Economic Perspectives on Technological Literacy (David W. Stevens)
5. Labor, Private Sector, and Governmental Perspectives on Technological Literacy (James L. Barnes and Thomas L. Erekson)
6. Education Perspectives on Technological Literacy (M. James Bensen)
7. Technological Literacy Synthesized (Michael J. Dyrenfurth)
8. Implementation of School-Based Technology Education Programs (Robert Daiber, Les Litherland, and Terry Thode)
9. Support Activities for Implementing Technology Education Programs (Roger Stacy and Harry Tobin)
10. The Challenge for Technology Teacher Education Programs (Larry Hatch and Ronald Jones)
11. Technological Literacy: The Evolving Paradigm

Yearbook 41 - 1992

Transportation in Technology Education (John R. Wright and Stanley Komacek, eds.)
1. Introduction to Transportation Technology (Paul W. DeVore)
2. Transportation Technology Education: Rationale, Structure, and Content (Stanley A. Komacek)
3. Transportation Technology, Present Development (Anthony Schwaller)
4. Technical, Social, and Biological Impacts of Transportation Technology (Robert W. Gubala)
5. Transportation Technology Education in the Elementary School (William R. Cupples)
6. Transportation Technology Education in the Middle School (William E. Tracey, Jr.)
7. Transportation Technology Education in the High School (Robert A. Daiber)
8. Transportation Technology Teacher Education (David L. Rouch)
9. The Learning Environment for Transportation Technology Education (Stanley A. Komacek and Gary Bolyard)
10. Providing Assessment for Transportation Technology Curricula (Anthony F. Gilberti)

Yearbook 42 - 1993
Manufacturing in Technology Education (Richard D. Seymour and Ray L. Shackelford, eds.)
1. Rationale and Structures for Studying Manufacturing (R. Thomas Wright)
2. Manufacturing Technology: A Societal Perspective (Franzie Loepp and Michael Daugherty)
3. Manufacturing Technology at the Elementary Level (Patricia Farrar-Hunter)
4. Manufacturing Technology at the Middle School Level (Ray Shackelford and Daniel Chapin)
5. Manufacturing Technology at the High School Level (Ray Shackelford)
6. Manufacturing Technology in Teacher Education Programs (James E. LaPorte)
7. Establishing the Manufacturing Teaching/Learning Environment (Jack W. Wescott)
8. Facilities for Teaching Manufacturing (Douglas L. Polette)
9. Synthesis of Systems/Approaches for the Study of Manufacturing (Richard D. Seymour)

Yearbook 43 - 1994
Construction in Technology Education (Jack W. Wescott and Richard M. Henak, eds.)
1. Rationale and Structure of Content for Construction in Technology Education (Richard M. Henak)
2. Past, Present, and Future of Construction Technology (David A. Ross)
3. Impacts of Construction Technology (Peter H. Wright)
4. Construction in Elementary School Technology Education (James J. Kirkwood)
5. Construction in Middle School Technology Education (Richard A Boser and Dennis Gallo)
6. Construction in High School Technology Education (Stanley A. Komacek)
7. Preparing Teachers of Construction in Technology Education (Jack W. Wescott)
8. Instructional Approaches to Teaching Construction in Technology Education (James E. LaPorte)
10. Assessment of Learning and Instruction of Construction in Technology Programs (Scott D. Johnson)
11. Construction Technology in Developing Countries (Alfredo R. Missair)
12. Summary and Reflections (M. James Bensen)

Yearbook 44 - 1995
Foundations of Technology Education (G. Eugene Martin, ed.)
1. A Context for Technology Education (M. James Bensen)
2. Technology Education and Other Technically Related Programs (Everett N. Israel)
3. Technology and Liberal Education (A. Emerson Wiens)
4. Technology and the Humanities (Walter B. Waetjen)
5. Integrating Technology, Science, and Mathematics (James E. LaPorte and Mark E. Sanders)
6. Technology Education Facilities (Douglas L. Polette)
8. Communication Technology Education (Jane A. Liedtke)
9. Manufacturing Technology Education (Richard D. Seymour)
10. Transportation Technology Education (Stanley A. Komacek)
11. Construction Technology Education (Richard M. Henak)
12. Implementing Technology Education (R. Thomas Wright)
13. Instructional Strategies for Technology Education (Anthony E. Schwaller)
14. Undergraduate and Graduate Technology Education (Michael L. Scott and James J. Buffer)
15. Technology Education: A Global Influence (William E. Dugger, Jr.)
16. Technology Education Leadership (Robert E. Wenig)
17. The International Technology Education Association (Kendall N. Starkweather)
18. Professional Councils and Associations (Donald P. Lauda)
19. Professional Publications in Technology Education (Mark E. Sanders)

Yearbook 45 - 1996

Technology and the Quality of Life (Rodney L. Custer and A. Emerson Wiens, eds.)
1. Technology and the Quality of Life (A. Emerson Wiens and Kenton S. Wiens)
2. Examining Cultural Ideologies (Rodney L. Custer)
3. The Media (Stewart M. Hoover and Mark Sanders)
4. The Military (Michael Daugherty and Robert Wicklein)
5. Technology Comes to the Country: The Marketing of Rural Life (Daryl Hobbs)
6. Urban America (Britta Fischer)
7. Technology, the Arts, and Social Constructivism (W. Tad Foster)
8. Technology and the Health Care System (Marvis L. Custer, JoAnne Kirk, and John Prince)
9. Technology - Social and Interpersonal Interaction (Jean Lichty Hendricks)
10. Technology, Crime, and Civil Liberties (Gene Stephens)
11. Technology and the Environment (Michael Karian)
12. Technology and the Changing Nature of Work (David C. Bjorkquist and Joseph D. Fridgen)
13. Technology, Consumerism, and Consumption (Peter Wright)

Yearbook 46 - 1997

Elementary School Technology Education (Patrick N. Foster and James J. Kirkwood, eds.)
1. The Child, the School, and the World (Patrick N. Foster and James J. Kirkwood)
Section I: Connections: Content and Method in the Curriculum: Overview: (Michael D. Wright)
2. Technology as a Social Study (Cynthia Szymanski Sunal and Dennis W. Sunal)
4. Reading, Writing, and Technology (J. Fred Ilott and Helen G. Ilott)
5. Technology and Children’s Literature (Michael J. Kleeberg and James J. Kirkwood)
Section II. Programs: Technology Education as Process: Overview (Patrick N. Foster)
6. Engaging the Senses in a Quest for Meaning (Kenneth Welty)
7. A New Paradigm for Schooling (Ronald D. Todd)
8. Implementing a National Program (Steven Barbato)
9. An Articulated Whole-School Approach (Michael D. Wright and Chip Miller)
Section III: Theoretical Considerations: Overview (James R. McCracken)
10. Teacher Education (Lewis D. Kieft)
11. Inservicing Teachers (Barry David)
12. Review and Synthesis of Research (Karen F. Zuga)
Summary and Reflections (Sharon Brusic)
Appendix A: Characteristics of Technology Activities (Patrick N. Foster)
Appendix B: Snapshots from Practice (Kenneth Welty)

Yearbook 47 - 1998

Diversity in Technology Education (Betty L. Rider, ed.)
1. Society, Diversity, and Technology Education (Donna K. Trautman)
Section I: Historical Influences of Underrepresented Groups in Technology Education
2. A Historical View of Women’s Roles in Technology Education (Karen F. Zuga)
3. Contributions of African-Americans to Technology Education (Michael L. Scott and Keith V. Johnson)

Section II: Underrepresented Groups as Technology Students and Educators
4. Women as Technology Educators (Colleen E. Hill)
5. Minority Students (Elazer J. Barnette)

Section III: Increasing and Supporting Diversity
6. Reading, Writing, and Technology (Karen Coale Tracey)
7. Mentors for Women in Technology (Daniel L. Householder)
8. Effective Leadership for All (Elizabeth Smith)
9. Environmental and Climate Challenges in Technology Education (Jane A. Liedtke)
10. Diversity in Technology Education (Janet L. Robb)

Yearbook 48 - 1999
Advancing Professionalism In Technology Education (Anthony F. Gilberti and David L. Rouch, eds.)

Section I: The Need for Professionalism In Technology Education
1. The Need for Professionalism in Technology Education: Challenges for the Future (Anthony F. Gilberti)

Section II: Defining Professionalism And Leadership
2. Professionalism and Leadership in Technology Education (David L. Rouch)
3. Conceptual Explanations of Leadership (Roy A. Buckingham)

Section III: Opportunities For Improvement In Professionalism And Leadership
4. Strategies for Improving Professionalism (James E. Smallwood)
5. Professional Associations, Organizations & Other Growth Opportunities (Edward M. Reeve)
6. Developing Effective In-Service for Technology Education (John C. Larkin)
7. Professionalism, Public Relations, and Politics (Brigitte G. Valesey)
8. Identifying and Solving Professional Problems (Ronald D. Todd and John R. Karsnitz)

Section IV: Professionalism At Various Educational Levels
9. Teacher Professionalism in Primary and Secondary Education (Anthony R. Korwin and Joan Haas)
10. Teacher Professionalism in Higher Education (John R. Wright)
11. The Chairperson’s Role as a Professional in Higher Education (Michael L. Scott)
12. The Administrator’s Role as a Professional in Higher Education (M. James Bensen)

Section V: Professionalism For The Future
13. The Professional’s Role in Strategic Planning (Arthur J. Rosser)
14. Fostering a Professional Culture in Technology Education (David H. Devier)

Yearbook 49 - 2000
Technology Education For The 21st Century (E. Eugene Martin, ed.)

Unit I: Evolving Into the 21st Century
Essay 1. The Past Defines the Paths to be Taken (Jerry Streichler)

Unit II: Exemplary Practices For The 21st Century
Essay 2. Developing a Curriculum Process (Bryan Albrecht)
Essay 3. Design Problem Solving: The Signature of Technology Education (Allen Bame and Robert Booth)
Essay 4. Primary Design and Technology – 10 Years On (Clare Benson)
Essay 5. Why Can’t the Sun Shine Everywhere at the Same Time? (Robert Booth and Allen Bame)
Essay 6. Hands-On, Minds on Learning: Putting It All Together (Barry N. Burke)
Essay 7. Imagineering: Creating the Future (Barry N. Burke)
Essay 8. Technology Modeling (Robert A. Daiber)
Essay 9. Technology Education is Powerful Teaching (Michael A. De Miranda)
Essay 10. A School Within a School: Teamwork at its Best (W. Tad Foster)
Essay 11. Igniting the Passion through TECA (William L. Havice and Gerald G. Lovedahel)
Essay 13. Of Artifacts and Emotions (James E. LaPorte)
Essay 14. Design-The Creative Soul of Technology (James R. McCracken)
Essay 15. Electronic Portfolios (Edward M. Reeve)
Essay 16. Service Learning (Edward M. Reeve)
Essay 18. The American Technology Honor Society (Rosanne T. White)

Unit III: Our 21st Century Agenda
Essay 22. Standards-Based Reform for Technology Education (William E. Dugger, Jr.)
Essay 23. Teachers for Tomorrow (William D. Greer)
Essay 24. The Age of Virtual Reality (Richard Grimsley)
Essay 25. Envisioning The Whole Technologist (Patricia A. Hutchinson)
Essay 26. The State Supervisor’s Role in Managing National Change (Gregory C. Kane)
Essay 27. A Curriculum at Risk? The Identity Crisis Continues (Linda Rae Market)
Essay 29. From Fluid Mechanics to Fluid Intelligence (William S. Pretzer)
Essay 30. Power Play or No Play? (Mark Sanders)
Essay 31. Knowing Where You’re Going! (Anthony E. Schwaller)
Essay 32. Technology Education for Some Americans? (Michael L. Scott)
Essay 33. Do We Teach Technology? Yes, But We Also Teach Kids! (Richard D. Seymour)
Essay 34. Concepts in Technology: Seeing the Order in the Chaos (Marc J. de Vries)
Essay 35. Pursuing Profound Understandings in Technology (Kenneth Welty)
Essay 36. Technology with a Human Face (Robert C. Wicklein)
Essay 37. Technology Education as an Integrator of Science and Mathematics (Karen F. Zuga)

Unit IV: A Call To Action
Essay 38. The New Millennium: A Time for Change (G. Eugene Martin)

Yearbook 50 - 2001
Appropriate Technology For Sustainable Living (Robert C. Wicklein, ed.)
1. Philosophical Rationale for Appropriate Technology (Robert C. Wicklein and Charles J. Kachmar)
2. Economics of Appropriate Technology (Stephen Petrina and Patricia O’Riley)
3. Ramifications of Failure to Use Appropriate Technology (Charles H. McLaughlin, Jr.)
4. Moral and Ethical Issues Related to Appropriate Technology (Roger B. Hill and Garner Dewey)
5. Design Criteria for Developing Appropriate Technology (Marie Hoepfl)
6. Cultural and Gender Issues in Appropriate Technology (Edward C. Pytlik, Ernest Frank, III, and Anthony Akubue)
7. School-Based Issues and Appropriate Technology (Peter Wright)
8. Multidisciplinary Curriculum and Appropriate Technology (Vincent W. Childress)
9. Problem Solving in Appropriate Technology (Micheal Daugherty)
10. Appropriate Technology Case Studies: Lessons Learned (Charles Linnell and Dennis Scanlin)
11. Future Directions for Appropriate Technology in the Technology Education Curriculum (Anthony F. Gilberti)

Yearbook 51 – 2002

Standards For Technological Literacy: The Role of Teacher Education (John M. Ritz, William E. Dugger, and Everett N. Israel, eds.)

Section I: Role of Standards in Education
1. Technology Education Standards: Power, Peril, and Promise (Rodger Bybee)
2. Role of Standards in Different Subject Areas (Pamela Newberry and Linda S. Hallenbeck)

Section II: Content Standards for Technological Literacy Education
3. Rationale and Structure for Standards for Technological Literacy (G. Eugene Martin)
4. Standards for Technological Literacy: Content for the Study of Technology (William E. Dugger, Jr.)

Section III: Application of Content Standards for Technological Literacy in Technology Teacher Education
5. Future Technology Teacher Education Programs Based on Standards for Technological Literacy (Anthony F. Gilberti and G. Eugene Martin)
6. Restructuring the Technology Teacher Education Curriculum (Rodney L. Custer and R. Thomas Wright)
7. Alternative Programs for Technology Teacher Preparation (John M. Ritz and Leon L. Copeland, Sr.)

Section IV: Certification/Licensure Requirements for Technology Education Teachers
8. The Implications of Standards for Technological Literacy for Teacher Licensure in Technology Education (Mark E. Sanders and Len S. Litowitz)

Section V: Delivery of In-Service Training for Implementing the Content Standards for Technological Literacy
10. Technology Teacher Education’s In-Servicing of Technology Education Teachers (John R. Wright)
11. Cooperative In-Service by Teacher Educators and State Departments of Education (Bryan Albrecht, Ken Starkman, Douglas Wagner, and Ron Barker)
12. Teacher Education and National Organizations: Their Relationships in Preparing Standards-Oriented Technology Teachers (Kendall N. Starkweather)

Section VI: Recommendations for Implementing the Content Standards for Technological Literacy Education
13. Providing Education to Implement Standards for Technological Literacy (William E. Dugger, John M. Ritz, and Everett N. Israel)

Yearbook 52 – 2003

Selecting Instructional Strategies For Technology Education (Kurt R. Helgeson and Anthony E. Schwaller, eds.)
Section I: Introduction to Instructional Strategies
1. Introduction to Instructional Strategies (Kurt R. Helgeson)
2. Student Characteristics and Learning Theory (Peggy Martin)
3. Individual Philosophy and Instructional Strategies (Brigitte G. Valesey)

Section II: Instructional Strategies for Teaching Technological Literacy
4. Concept Learning in Technology Education (Marie Hoepfl)
5. Interdisciplinary Approaches to Teaching Technology Education (Mark Sanders)
6. Teaching Social/Cultural Impacts in Technology Education (Brian McAlister)
7. Design and Problem Solving in Technology Education (Richard Westberry)
8. Inquiry in Technology Education (Philip A. Reed)
9. Cooperative Learning in Technology Education (Edward M. Reeve and Steve Shumway)
10. Web-based Instruction in Technology Education (Michael R. Roberts and Thomas M. Hopewell)
11. Using Modular Environments in Technology Education (Dan Rodriguez and Anthony E. Schwaller)
12. Student Competitions in Technology Education (Jenae M. Nagel)

Section III: Assessment & Summary
14. Assessment of Instructional Strategies (Mike Lindstrom)
15. Summary and Reflections (Kurt R. Helgeson and Anthony E. Schwaller)

Yearbook 53 – 2004
Ethics For Citizenship In A Technological World (Roger B. Hill, ed.)
1. Introduction to Ethical Issues in a Technological World (Roger B. Hill)
2. Ethics in a Culturally Diverse Technological World (Linda Rae Markert)
4. Ethics and the Assessment of Technological Impacts on Society (Robert C. Wicklein)
5. Developmental and Contextual Issues Related to Ethics and Character (Rodney L. Custer and Danny C. Brown)
6. The Status of Ethics in Technology Education (Philip A. Reed, Susan Presley, Angela Hughes, and Diane Irwin Stephens)
9. Closing Thoughts about Ethics for Citizenship in a Technological World (Roger B. Hill)

Yearbook 54 – 2005
Distance and Distributed Learning Environments (William A. Havice & Pamela L. Havice, eds.)
1. Distance and Distributed Learning Environments: Enhancing the Teaching of Technology (William L. Havice and Pamela L. Havice)
2. Distance and Distributed Learning in Technology Teacher Education (Rodney L. Custer and Klaus Schmidt)
3. Strategy for Planning, Designing, and Managing Distance and Distributed Learning at the University (Kenneth P. Pisel and John M. Ritz)
5. Portals for Technology Education (Mark E. Sanders)
6. Digital Portfolios: Enhancing the Distributed Learning Environment (William L. Havice and Angela M. Rogers)
7. Enhancing Distributed Learning through Electronic Collaboration and Group Interaction (Clint H. Isbell)
8. New Ventures in Technology Teacher Certification: Perspectives and Strategies (Wally S. Holmes Bouchillon and Don Mugan)
9. Lessons to Consider: Distance and Distributed Learning Environments from Student and Faculty Perspectives (Jim Flowers)
10. Distance and Distributed Learning Environments: Assessment Strategies (Pamela A. Havice and William L. Havice)
11. Ownership and Copyright Issues (G. Eugene Martin)
12. Expanding Distance and Distributed Learning Environments: The Digitally Integrated Learning Experience (James A. Dias)
13. Perspectives on the Future of Distributed Learning in Technology Education (Chris Merrill)